
Ministry of Education (MINEDU)
Sillabus 2021-I

1. COURSE
CS3P1. Parallel and Distributed Computing (Mandatory)

2. GENERAL INFORMATION

2.1 Credits : 4
2.2 Theory Hours : 2 (Weekly)
2.3 Practice Hours : 4 (Weekly)
2.4 Duration of the period : 16 weeks
2.5 Type of course : Mandatory
2.6 Modality : Face to face

2.7 Prerrequisites :
• CS212. Analysis and Design of Algorithms. (5th Sem)

• CS231. Networking and Communication. (5th Sem)

3. PROFESSORS

Meetings after coordination with the professor

4. INTRODUCTION TO THE COURSE
The last decade has brought explosive growth in computing with multiprocessors, including Multi-core processors and
distributed data centers. As a result, computing parallel and distributed has become a widely elective subject to be
one of the main components in the mesh studies in computer science undergraduate. Both parallel and distributed
computing the simultaneous execution of multiple processes, whose operations have the potential to intercalar in a complex
way. Parallel and distributed computing builds on foundations in many areas, including understanding the fundamental
concepts of systems, such as: concurrency and parallel execution, consistency in state / memory manipulation, and
latency. The communication and coordination between processes has its foundations in the passage of messages and models
of shared memory of computing and algorithmic concepts like atomicity, consensus and conditional waiting.Achieving
acceleration in practice requires an understanding of parallel algorithms, strategies for decomposition problem, systems
architecture, implementation strategies and analysis of performance. Distributed systems highlight the problems of security
and tolerance to Failures, emphasize the maintenance of the replicated state and introduce additional problems in the field
of computer networks.

5. GOALS

• That the student is able to create parallel applications of medium complexity by efficiently leveraging machines with
multiple cores.

• That the student is able to compare sequential and parallel applications.

• That the student is able to convert, when the situation warrants, sequential applications to parallel efficiently

6. COMPETENCES

a) An ability to apply knowledge of mathematics, science. (Usage)

b) An ability to design and conduct experiments, as well as to analyze and interpret data. (Usage)

a) An ability to apply knowledge of mathematics, science. (Usage)

b) An ability to design and conduct experiments, as well as to analyze and interpret data. (Usage)

c) An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic,
environmental, social, political, ethical, health and safety, manufacturability, and sustainability. (Usage)

g) The broad education necessary to understand the impact of computing solutions in a global, economic, environmental,
and societal context. (Usage)

a5) (5)

b2) (2)

1

7. TOPICS

Unit 1: Parallelism Fundamentals (18)
Competences Expected: a
Topics Learning Outcomes

• Multiple simultaneous computations

• Goals of parallelism (e.g., throughput) versus con-
currency (e.g., controlling access to shared resources)

• Parallelism, communication, and coordination

– Parallelism, communication, and coordination

– Need for synchronization

• Programming errors not found in sequential pro-
gramming

– Data races (simultaneous read/write or
write/write of shared state)

– Higher-level races (interleavings violating pro-
gram intention, undesired non-determinism)

– Lack of liveness/progress (deadlock, starvation)

• Distinguish using computational resources for a
faster answer from managing efficient access to a
shared resource [Familiarity]

• Distinguish multiple sufficient programming con-
structs for synchronization that may be inter-
implementable but have complementary advan-
tages [Familiarity]

• Distinguish data races from higher level races [Fa-
miliarity]

Readings : [Pac11], [Mat14], [quinnz], [Geo10]

Unit 2: Parallel Architecture (12)
Competences Expected: a,b
Topics Learning Outcomes

• Multicore processors

• Shared vs distributed memory

• Symmetric multiprocessing (SMP)

• SIMD, vector processing

• GPU, co-processing

• Flynn’s taxonomy

• Instruction level support for parallel programming

– Atomic instructions such as Compare and Set

• Memory issues

– Multiprocessor caches and cache coherence

– Non-uniform memory access (NUMA)

• Topologies

– Interconnects

– Clusters

– Resource sharing (e.g., buses and interconnects)

• Explain the differences between shared and dis-
tributed memory [Assessment]

• Describe the SMP architecture and note its key fea-
tures [Assessment]

• Characterize the kinds of tasks that are a natural
match for SIMD machines [Usage]

• Describe the advantages and limitations of GPUs vs
CPUs [Usage]

• Explain the features of each classification in Flynn’s
taxonomy [Usage]

• Describe the challenges in maintaining cache coher-
ence [Familiarity]

• Describe the key performance challenges in different
memory and distributed system topologies [Famil-
iarity]

Readings : [Pac11], [KH13], [SK10], [Geo10]

2

Unit 3: Parallel Decomposition (18)
Competences Expected: a,b
Topics Learning Outcomes

• Need for communication and coordina-
tion/synchronization

• Independence and partitioning

• Basic knowledge of parallel decomposition concept

• Task-based decomposition

– Implementation strategies such as threads

• Data-parallel decomposition

– Strategies such as SIMD and MapReduce

• Actors and reactive processes (e.g., request handlers)

• Explain why synchronization is necessary in a spe-
cific parallel program [Usage]

• Identify opportunities to partition a serial program
into independent parallel modules [Familiarity]

• Write a correct and scalable parallel algorithm [Us-
age]

• Parallelize an algorithm by applying task-based de-
composition [Usage]

• Parallelize an algorithm by applying data-parallel
decomposition [Usage]

• Write a program using actors and/or reactive pro-
cesses [Usage]

Readings : [Pac11], [Mat14], [Qui03], [Geo10]

3

Unit 4: Communication and Coordination (18)
Competences Expected: a,b
Topics Learning Outcomes

• Shared Memory

• Consistency, and its role in programming language
guarantees for data-race-free programs

• Message passing

– Point-to-point versus multicast (or event-
based) messages

– Blocking versus non-blocking styles for sending
and receiving messages

– Message buffering (cross-reference
PF/Fundamental Data Structures/Queues)

• Atomicity

– Specifying and testing atomicity and safety re-
quirements

– Granularity of atomic accesses and updates,
and the use of constructs such as critical sec-
tions or transactions to describe them

– Mutual Exclusion using locks, semaphores,
monitors, or related constructs

∗ Potential for liveness failures and deadlock
(causes, conditions, prevention)

– Composition

∗ Composing larger granularity atomic ac-
tions using synchronization

∗ Transactions, including optimistic and con-
servative approaches

• Consensus

– (Cyclic) barriers, counters, or related con-
structs

• Conditional actions

– Conditional waiting (e.g., using condition vari-
ables)

• Use mutual exclusion to avoid a given race condi-
tion [Usage]

• Give an example of an ordering of accesses among
concurrent activities (eg, program with a data race)
that is not sequentially consistent [Familiarity]

• Give an example of a scenario in which blocking mes-
sage sends can deadlock [Usage]

• Explain when and why multicast or event-based mes-
saging can be preferable to alternatives [Familiarity]

• Write a program that correctly terminates when all
of a set of concurrent tasks have completed [Usage]

• Give an example of a scenario in which an attempted
optimistic update may never complete [Familiarity]

• Use semaphores or condition variables to block
threads until a necessary precondition holds [Usage]

Readings : [Pac11], [Mat14], [Qui03], [Geo10]

4

Unit 5: Parallel Algorithms, Analysis, and Programming (18)
Competences Expected: a,b
Topics Learning Outcomes

• Critical paths, work and span, and the relation to
Amdahl’s law

• Speed-up and scalability

• Naturally (embarrassingly) parallel algorithms

• Parallel algorithmic patterns (divide-and-conquer,
map and reduce, master-workers, others)

– Specific algorithms (e.g., parallel MergeSort)

• Parallel graph algorithms (e.g., parallel short-
est path, parallel spanning tree) (cross-reference
AL/Algorithmic Strategies/Divide-and-conquer)

• Parallel matrix computations

• Producer-consumer and pipelined algorithms

• Examples of non-scalable parallel algorithms

• Define “critical path”, “work”, and “span” [Familiar-
ity]

• Compute the work and span, and determine the crit-
ical path with respect to a parallel execution dia-
gram [Usage]

• Define “speed-up” and explain the notion of an algo-
rithm’s scalability in this regard [Familiarity]

• Identify independent tasks in a program that may be
parallelized [Usage]

• Characterize features of a workload that allow or pre-
vent it from being naturally parallelized [Familiarity]

• Implement a parallel divide-and-conquer (and/or
graph algorithm) and empirically measure its per-
formance relative to its sequential analog [Usage]

• Decompose a problem (eg, counting the number of
occurrences of some word in a document) via map
and reduce operations [Usage]

• Provide an example of a problem that fits the
producer-consumer paradigm [Usage]

• Give examples of problems where pipelining would
be an effective means of parallelization [Usage]

• Implement a parallel matrix algorithm [Usage]

• Identify issues that arise in producer-consumer al-
gorithms and mechanisms that may be used for ad-
dressing them [Usage]

Readings : [Mat14], [Qui03], [Geo10]

5

Unit 6: Parallel Performance (18)
Competences Expected: a,b,c
Topics Learning Outcomes

• Load balancing

• Performance measurement

• Scheduling and contention (cross-reference
OS/Scheduling and Dispatch)

• Evaluating communication overhead

• Data management

– Non-uniform communication costs due to prox-
imity (cross-reference SF/Proximity)

– Cache effects (e.g., false sharing)

– Maintaining spatial locality

• Power usage and management

• Detect and correct a load imbalance [Usage]

• Calculate the implications of Amdahl’s law for
a particular parallel algorithm (cross-reference
SF/Evaluation for Amdahl’s Law) [Usage]

• Describe how data distribution/layout can affect an
algorithm’s communication costs [Familiarity]

• Detect and correct an instance of false sharing [Us-
age]

• Explain the impact of scheduling on parallel perfor-
mance [Familiarity]

• Explain performance impacts of data locality [Famil-
iarity]

• Explain the impact and trade-off related to power
usage on parallel performance [Familiarity]

Readings : [Pac11], [Mat14], [KH13], [SK10], [Geo10]

8. WORKPLAN

8.1 Methodology

Individual and team participation is encouraged to present their ideas, motivating them with additional points in the
different stages of the course evaluation.

8.2 Theory Sessions

The theory sessions are held in master classes with activities including active learning and roleplay to allow students
to internalize the concepts.

8.3 Practical Sessions

The practical sessions are held in class where a series of exercises and/or practical concepts are developed through
problem solving, problem solving, specific exercises and/or in application contexts.

9. EVALUATION SYSTEM

********* EVALUATION MISSING ********
10. BASIC BIBLIOGRAPHY

[Geo10] Gerhard Wellein Georg Hager. Introduction to High Performance Computing for Scientists and Engineers (Chap-
man & HallCRC Computational Science). Ed. by CRC Press. 1st. 2010. isbn: 978-1439811924.

[KH13] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors: A Hands-on Approach. 2nd.
Morgan Kaufmann, 2013. isbn: 978-0-12-415992-1.

[Mat14] Norm Matloff. Programming on Parallel Machines. University of California, Davis, 2014. url: http://heather.
cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf.

[Pac11] Peter S. Pacheco. An Introduction to Parallel Programming. 1st. Morgan Kaufmann, 2011. isbn: 978-0-12-374260-
5.

[Qui03] Michael J. Quinn. Parallel Programming in C with MPI and OpenMP. 1st. McGraw-Hill Education Group, 2003.
isbn: 0071232656.

6

[SK10] Jason Sanders and Edward Kandrot. CUDA by Example: An Introduction to General-Purpose GPU Program-
ming. 1st. Addison-Wesley Professional, 2010. isbn: 0131387685, 9780131387683.

7

