
San Pablo Catholic University (UCSP)
Undergraduate Program in

Computer Science
SILABO

CS111. Videogames Programming (Mandatory)

2023-I
1. General information
1.1 School : Ciencia de la Computación
1.2 Course : CS111. Videogames Programming
1.3 Semester : 1er Semestre.
1.4 Prerrequisites : None
1.5 Type of course : Mandatory
1.6 Learning modality : Face to face
1.7 Horas : 2 HT; 4 HP;
1.8 Credits : 4
1.9 Plan : Plan Curricular 2016

2. Professors
Lecturer

• Graciela Lecireth Meza Lovón <gmezal@ucsp.edu.pe>
– PhD in Ciencia de la Computación, Universidad Nacional San Agust́ın, Perú, 2016.
– MSc in Ciencia de la Computación, UFMS-MS, Brasil, 2007.

• Kelly Vizconde la Motta <kvizconde@ucsp.edu.pe>
– MSc in Mag. Ciencia de la Computación, Universidad Católica San Pablo, Perú, 2019.

Practice

• Yessenia Deysi Yari Ramos <ydyari@ucsp.edu.pe>
– MSc in Ciencias de la Computación, UFRGS, Brasil, 2011.

3. Course foundation
This is the first course in the sequence of introductory courses to Computer Science.This course is intended to cover the
concepts outlined by the Computing Curricula IEEE-CS/ACM 2013. Programming is one of the pillars of Computer
Science; any professional of the area, will need to program to materialize their models and proposals. This course
introduces participants to the fundamental concepts of this art. Topics include data types, control structures, functions,
lists, recursion, and the mechanics of execution, testing, and debugging.

4. Summary

1. History 2. Basic Type Systems 3. Fundamental Programming Concepts 4. Basic Analysis 5. Fundamental Data
Structures and Algorithms 6. Algorithms and Design 7. Development Methods

5. Generales Goals

• Introduce the fundamental concepts of programming.

• Develop the ability of abstraction using programming language

1



6. Contribution to Outcomes
This discipline contributes to the achievement of the following outcomes:

1) Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to
identify solutions. (Usage)

2) Design, implement and evaluate a computing-based solution to meet a given set of computing requirements in the
context of the program’s discipline. (Usage)

6) Apply computer science theory and software development fundamentals to produce computing-based solutions.
(Usage)

7. Content

UNIT 1: History (5)
Competences:
Content Generales Goals

• Prehistory, the world before 1946

• History of computer hardware, software, networking

• Pioneers of computing

• History of the Internet

• Identify significant continuing trends in the history
of the computing field [Familiarity]

• Identify the contributions of several pioneers in the
computing field [Familiarity]

• Discuss the historical context for several program-
ming language paradigms [Familiarity]

• Compare daily life before and after the advent of
personal computers and the Internet [Assessment]

Readings: Brookshear and Brylow (2019), Guttag (2013), Zelle (2010)

UNIT 2: Basic Type Systems (2)
Competences:
Content Generales Goals

• A type as a set of values together with a set of op-
erations

– Primitive types (e.g., numbers, Booleans)

– Compound types built from other types (e.g.,
records, unions, arrays, lists, functions, refer-
ences)

• Association of types to variables, arguments, results,
and fields

• Type safety and errors caused by using values incon-
sistently given their intended types

• For both a primitive and a compound type, infor-
mally describe the values that have that type [Fa-
miliarity]

• For a language with a static type system, describe
the operations that are forbidden statically, such as
passing the wrong type of value to a function or
method [Familiarity]

• Describe examples of program errors detected by a
type system [Familiarity]

• For multiple programming languages, identify pro-
gram properties checked statically and program
properties checked dynamically [Usage]

• Use types and type-error messages to write and de-
bug programs [Usage]

• Define and use program pieces (such as functions,
classes, methods) that use generic types, including
for collections [Usage]

Readings: Guttag (2013), Zelle (2010)

2



UNIT 3: Fundamental Programming Concepts (9)
Competences:
Content Generales Goals

• Basic syntax and semantics of a higher-level language

• Variables and primitive data types (e.g., numbers,
characters, Booleans)

• Expressions and assingments

• Simple I/O including file I/O

• Conditional and iterative control structures

• Functions and parameter passing

• The concept of recursion

• Analyze and explain the behavior of simple programs
involving the fundamental programming constructs
variables, expressions, assignments, I/O, control con-
structs, functions, parameter passing, and recursion.
[Assessment]

• Identify and describe uses of primitive data types
[Familiarity]

• Write programs that use primitive data types [Usage]

• Modify and expand short programs that use stan-
dard conditional and iterative control structures and
functions [Usage]

• Design, implement, test, and debug a program that
uses each of the following fundamental programming
constructs: basic computation, simple I/O, standard
conditional and iterative structures, the definition of
functions, and parameter passing [Usage]

• Write a program that uses file I/O to provide persis-
tence across multiple executions [Usage]

• Choose appropriate conditional and iteration con-
structs for a given programming task [Familiarity]

• Describe the concept of recursion and give examples
of its use [Assessment]

• Identify the base case and the general case of a
recursively-defined problem [Familiarity]

Readings: Guttag (2013), Zelle (2010)

UNIT 4: Basic Analysis (2)
Competences:
Content Generales Goals

• Differences among best, expected, and worst case be-
haviors of an algorithm

• Big O notation: formal definition

• Complexity classes, such as constant, logarithmic,
linear, quadratic, and exponential

• Big O notation: use

• Analysis of iterative and recursive algorithms

• Explain what is meant by “best”, “expected”, and
“worst” case behavior of an algorithm [Familiarity]

• In the context of specific algorithms, identify the
characteristics of data and/or other conditions or as-
sumptions that lead to different behaviors [Familiar-
ity]

• State the formal definition of big O [Familiarity]

• Use big O notation formally to give asymptotic up-
per bounds on time and space complexity of algo-
rithms [Usage]

• Use big O notation formally to give expected case
bounds on time complexity of algorithms [Usage]

Readings: Guttag (2013), Zelle (2010)

3



UNIT 5: Fundamental Data Structures and Algorithms (8)
Competences:
Content Generales Goals

• Simple numerical algorithms, such as computing the
average of a list of numbers, finding the min, max,

• Sequential and binary search algorithms

• Worst case quadratic sorting algorithms (selection,
insertion)

• Worst or average case O(N log N) sorting algorithms
(quicksort, heapsort, mergesort)

• Hash tables, including strategies for avoiding and re-
solving collisions

• Binary search trees

– Common operations on binary search trees such
as select min, max, insert, delete, iterate over
tree

• Graphs and graph algorithms

– Representations of graphs (e.g., adjacency list,
adjacency matrix)

– Depth- and breadth-first traversals

• Heaps

• Graphs and graph algorithms

– Maximum and minimum cut problem

– Local search

• Pattern matching and string/text algorithms (e.g.,
substring matching, regular expression matching,
longest common subsequence algorithms)

• Implement basic numerical algorithms [Usage]

• Implement simple search algorithms and explain the
differences in their time complexities [Assessment]

• Be able to implement common quadratic and O(N
log N) sorting algorithms [Usage]

• Describe the implementation of hash tables, includ-
ing collision avoidance and resolution [Familiarity]

• Discuss the runtime and memory efficiency of prin-
cipal algorithms for sorting, searching, and hashing
[Familiarity]

• Discuss factors other than computational efficiency
that influence the choice of algorithms, such as
programming time, maintainability, and the use of
application-specific patterns in the input data [Fa-
miliarity]

• Explain how tree balance affects the efficiency of var-
ious binary search tree operations [Familiarity]

• Solve problems using fundamental graph algorithms,
including depth-first and breadth-first search [Usage]

• Demonstrate the ability to evaluate algorithms, to
select from a range of possible options, to provide
justification for that selection, and to implement the
algorithm in a particular context [Assessment]

• Describe the heap property and the use of heaps as
an implementation of priority queues [Familiarity]

• Solve problems using graph algorithms, including
single-source and all-pairs shortest paths, and at
least one minimum spanning tree algorithm [Usage]

• Trace and/or implement a string-matching algo-
rithm [Usage]

Readings: Guttag (2013), Zelle (2010)

4



UNIT 6: Algorithms and Design (9)
Competences:
Content Generales Goals

• The concept and properties of algorithms

– Informal comparison of algorithm efficiency
(e.g., operation counts)

• The role of algorithms in the problem-solving process

• Problem-solving strategies

– Iterative and recursive mathematical functions

– Iterative and recursive traversal of data struc-
tures

– Divide-and-conquer strategies

• Fundamental design concepts and principles

– Abstraction

– Program decomposition

– Encapsulation and information hiding

– Separation of behaivor and implementation

• Discuss the importance of algorithms in the problem-
solving process [Familiarity]

• Discuss how a problem may be solved by multiple
algorithms, each with different properties [Familiar-
ity]

• Create algorithms for solving simple problems [Us-
age]

• Use a programming language to implement, test, and
debug algorithms for solving simple problems [Usage]

• Implement, test, and debug simple recursive func-
tions and procedures [Usage]

• Determine whether a recursive or iterative solution
is most appropriate for a problem [Assessment]

• Implement a divide-and-conquer algorithm for solv-
ing a problem [Usage]

• Apply the techniques of decomposition to break a
program into smaller pieces [Usage]

• Identify the data components and behaviors of mul-
tiple abstract data types [Usage]

• Implement a coherent abstract data type, with loose
coupling between components and behaviors [Usage]

• Identify the relative strengths and weaknesses among
multiple designs or implementations for a problem
[Assessment]

Readings: Guttag (2013), Zelle (2010)

UNIT 7: Development Methods (1)
Competences:
Content Generales Goals

• Modern programming enviroments

– Code search

– Programming using library components and
their APIs

• Construct and debug programs using the standard
libraries available with a chosen programming lan-
guage [Familiarity]

Readings: Guttag (2013), Zelle (2010)

8. Methodology

1. El profesor del curso presentará clases teóricas de los temas señalados en el programa propiciando la intervención de
los alumnos.

2. El profesor del curso presentará demostraciones para fundamentar clases teóricas.

3. El profesor y los alumnos realizarán prácticas

5



4. Los alumnos deberán asistir a clase habiendo léıdo lo que el profesor va a presentar. De esta manera se facilitará la
comprensión y los estudiantes estarán en mejores condiciones de hacer consultas en clase.

9. Assessment Theory Sessions:
The theory sessions are held in master classes with activities including active learning and roleplay to allow students to
internalize the concepts.

Practical Sessions:
The practical sessions are held in class where a series of exercises and/or practical concepts are developed through problem
solving, problem solving, specific exercises and/or in application contexts.

Evaluation System:
The final grade is obtained through of:

CONTINUOUS ASSESMENT EVALUATIONS
Continuous assessment 1 : 20 %

Continuous assessment 2 : 40 %

Midterm Exam : 20 %

Final Exam : 20 %

60% 40%

Where:

Continuous Assessment: It includes group work, active participation in class, exercise test.

• Continuos assessment 1 (weeks 1 - 9)

• Continuos assesment 2 (weeks 10 - 17)

To pass the course you must obtain 11.5 or more in the final grade .

References

Brookshear, J. Glenn and Dennis Brylow (2019). Computer Science: An Overview. Ed. by PEARSON. Global Edition.
Pearson. isbn: 1292263423.

Guttag, John V (2013). . Introduction To Computation And Programming Using Python. MIT Press.
Zelle, John (2010). Python Programming: An Introduction to Computer Science. Franklin, Beedle & Associates Inc.

6


