

National University of Engineering (UNI)

School of Computer Science Syllabus 2024-II

1. COURSE

FI102. Physics II (Mandatory)

2. GENERAL INFORMATION

2.1 Course	:	FI102. Physics II
2.2 Semester	:	2^{nd} Semester.
2.3 Credits	:	3
2.4 Horas	:	2 HT; 2 HP;
2.5 Duration of the period	:	16 weeks
2.6 Type of course	:	Mandatory
2.7 Learning modality	:	Face to face
2.8 Prerrequisites	:	FI101. Physics I. (1^{st} Sem)

3. PROFESSORS

Meetings after coordination with the professor

4. INTRODUCTION TO THE COURSE

Write justification for this course here ...

5. GOALS

- Write your first goal here..
- Write your second goal here..

6. COMPETENCES

1) Analyze a complex computing problem and apply principles of computing and other relevant disciplines to identify solutions. (Familiarity)

7. TOPICS

Unit 1: Unit title (2 hours) Competences Expected:		
• Topic1	• LearningOutcome1 [Familiarizarse].	
• Topic2	• LearningOutcome2 [Usar].	
	• LearningOutcome3 [Evaluar].	
Readings : [For20], [ACM23]		

8. WORKPLAN

8.1 Methodology

Individual and team participation is encouraged to present their ideas, motivating them with additional points in the different stages of the course evaluation.

8.2 Theory Sessions

The theory sessions are held in master classes with activities including active learning and roleplay to allow students to internalize the concepts.

8.3 Practical Sessions

The practical sessions are held in class where a series of exercises and/or practical concepts are developed through problem solving, problem solving, specific exercises and/or in application contexts.

9. EVALUATION SYSTEM

********* EVALUATION MISSING *******

10. BASIC BIBLIOGRAPHY

- [For20] ACM/IEEE-CS Joint Task Force. *Computing Curricula 2020*. Tech. rep. ACM Press and IEEE Computer Society Press, Dec. 2020. DOI: 10.1145/3467967. URL: https://dl.acm.org/citation.cfm?id=3467967.
- [ACM23] ACM/IEEE-CS/AAAI Joint Task Force. CS2023: ACM/IEEE-CS/AAAI Computer Science Curricula. Tech. rep. ACM Press, IEEE Computer Society Press, and AAAI Press, Mar. 2023.