

Universidad Nacional de Ucayali (UNU)

Programa Profesional de Ciencia de la Computación Sílabo 2023-I

1. CURSO

CS211. Teoría de la Computación (Obligatorio)

2. INFORMACIÓN GENERAL

2.1 Créditos : 4

2.2 Horas de teoría : 2 (Semanal)
2.3 Horas de práctica : 2 (Semanal)
2.4 Duración del periodo : 16 semanas
2.5 Condición : Obligatorio
2.6 Modalidad : Híbrido

2.7 Prerrequisitos : CS1D2. Estructuras Discretas II. (2^{do} Sem)

3. PROFESORES

Atención previa coordinación con el profesor

4. INTRODUCCIÓN AL CURSO

Este curso hace enfasis en los lenguajes formales, modelos de computación y computabilidad, además de incluir fundamentos de la complejidad computacional y de los problemas NP completos.

5. OBJETIVOS

• Que el alumno aprenda los conceptos fundamentales de la teoría de lenguajes formales.

6. COMPETENCIAS

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Evaluar)
- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (Evaluar)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la CS en el modelamiento y diseño de sistemas. (Evaluar)

7. TEMAS

Competencias esperadas: a		
emas	Objetivos de Aprendizaje	
 Máquinas de estado finito. Expresiones regulares. Problema de la parada. Gramáticas libres de contexto. Introducción a las clases P y NP y al problema P vs. NP. Introducción y ejemplos de problemas NP- Completos y a clases NP-Completos. Máquinas de Turing, o un modelo formal equivalente de computación universal. Máquinas de Turing no determinísticas. Jerarquía de Chomsky. La tesis de Church-Turing. Computabilidad. Teorema de Rice. Ejemplos de funciones no computables. Implicaciones de la no-computabilidad. 	 Discute el concepto de máquina de estado finir [Evaluar] Diseñe una máquina de estado finito determinis para aceptar un determinado lenguaje [Evaluar] Genere una expresión regular para representar u lenguaje específico [Evaluar] Explique porque el problema de la parada no tien solucion algorítmica [Evaluar] Diseñe una gramática libre de contexto para representar un lenguaje especificado [Evaluar] Define las clases P y NP [Evaluar] Explique el significado de NP-Completitud [Evaluar] Explica la tesis de Church-Turing y su importance [Familiarizarse] Explica el teorema de Rice y su importancia [Familiarizarse] Da ejemplos de funciones no computables [Familia izarse] Demuestra que un problema es no computable al reducir un problema clásico no computable en base él [Familiarizarse] 	

 Revisión de las clases P y NP; introducir spacio P y EXP. Jerarquía polimonial. NP completitud (Teorema de Cook). Problemas NP completos clásicos. Técnicas de reducción. 	 Define las clases P y NP (También aparece en AL / Automata Básico, Computalidad y Complejidad) [Evaluar] Define la clase P-Space y su relación con la clase
 EXP. Jerarquía polimonial. NP completitud (Teorema de Cook). Problemas NP completos clásicos. Técnicas de reducción. 	/ Automata Básico, Computalidad y Complejidad) [Evaluar] • Define la clase P-Space y su relación con la clase
Lecturas : [Mar10], [Lin11], [Sip12], [HU13]	 EXP [Evaluar] Explique el significado de NP-Completo (También aparece en AL / Automata Básico, Computalidad y Complejidad) [Evaluar] Muestre ejemplos de problemas clásicos en NP - Completo [Evaluar] Pruebe que un problema es NP- Completo reduciendo un problema conocido como NP-Completo [Evaluar]

Unidad 3: Teoría y Computabilidad Avanzada de Autómatas (20) Competencias esperadas: j		
 Conjuntos y Lenguajes: Lenguajes Regulares. Revisión de autómatas finitos determinísticos (Deterministic Finite Automata DFAs) Autómata finito no determinístico (Nondeterministic Finite Automata NFAs) Equivalencia de DFAs y NFAs. Revisión de expresiones regulares; su equivalencia con autómatas finitos. Propiedades de cierre. Probando no-regularidad de lenguajes, a través del lema de bombeo (Pumping Lemma) o medios alternativos. Lenguajes libres de contexto: Autómatas de pila (Push-down automata (PDAs) Relación entre PDA y gramáticas libres de contexto. Propiedades de los lenguajes libres de contexto. Lecturas: [HU13], [Bro93] 	 Determina la ubicación de un lenguaje en la jerarquía de Chomsky (regular, libre de contexto, enumerable recursivamente) [Evaluar] Convierte entre notaciones igualmente poderosas para un lenguaje, incluyendo entre estas AFDs, AFNDs, expresiones regulares, y entre AP y GLCs [Evaluar] 	
Lecturas: [HU15], [Br095]		

8. PLAN DE TRABAJO

8.1 Metodología

Se fomenta la participación individual y en equipo para exponer sus ideas, motivándolos con puntos adicionales en las diferentes etapas de la evaluación del curso.

8.2 Sesiones Teóricas

Las sesiones de teoría se llevan a cabo en clases magistrales donde se realizarán actividades que propicien un aprendizaje activo, con dinámicas que permitan a los estudiantes interiorizar los conceptos.

8.3 Sesiones Prácticas

Las sesiones prácticas se llevan en clase donde se desarrollan una serie de ejercicios y/o conceptos prácticos mediante planteamiento de problemas, la resolución de problemas, ejercicios puntuales y/o en contextos aplicativos.

9. SISTEMA DE EVALUACIÓN

****** EVALUATION MISSING ***

10. BIBLIOGRAFÍA BÁSICA

- [Bro93] J. Glenn Brookshear. Teoría de la Computación. Addison Wesley Iberoamericana, 1993.
- [HU13] John E. Hopcroft and Jeffrey D. Ullman. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Pearson Education, 2013.
- [Lin11] Peter Linz. An Introduction to Formal Languages and Automata. 5th. Jones and Bartlett Learning, 2011.
- [Mar10] John Martin. Introduction to Languages and the Theory of Computation. 4th. McGraw-Hill, 2010.
- [Sip12] Michael Sipser. Introduction to the Theory of Computation. 3rd. Cengage Learning, 2012.