

Universidad Nacional de Ucayali (UNU)

Programa Profesional de Ciencia de la Computación Sílabo 2023-I

1. CURSO

CS212. Análisis y Diseño de Algoritmos (Obligatorio)

2. INFORMACIÓN GENERAL

2.1 Créditos : 4

2.2 Horas de teoría : 2 (Semanal)
2.3 Horas de práctica : 2 (Semanal)
2.4 Duración del periodo : 16 semanas
2.5 Condición : Obligatorio
2.6 Modalidad : Híbrido

2.6 Modalidad : Hibrido

• CS210. Algoritmos y Estructuras de Datos. (4^{to} Sem)

2.7 Prerrequisitos

• CS211. Teoría de la Computación. (4^{to} Sem)

3. PROFESORES

Atención previa coordinación con el profesor

4. INTRODUCCIÓN AL CURSO

Un algoritmo es, esencialmente, un conjunto bien definido de reglas o instrucciones que permitan resolver un problema computacional. El estudio teórico del desempeño de los algoritmos y los recursos utilizados por estos, generalmente tiempo y espacio, nos permite evaluar si un algoritmo es adecuado para un resolver un problema específico, compararlo con otros algoritmos para el mismo problema o incluso delimitar la frontera entre lo viable y lo imposible.

Esta materia es tan importante que incluso Donald E. Knuth definió a Ciencia de la Computación como el estudio de algoritmos.

En este curso serán presentadas las técnicas más comunes utilizadas en el análisis y diseño de algoritmos eficientes, con el propósito de aprender los principios fundamentales del diseño, implementación y análisis de algoritmos para la solución de problemas computacionales.

5. OBJETIVOS

- Desarrollar la capacidad para evaluar la complejidad y calidad de algoritmos propuestos para un determinado problema.
- Estudiar los algoritmos más representativos, introductorios de las clases más importantes de problemas tratados en computación.
- Desarrollar la capacidad de resolución de problemas algorítmicos utilizando los principios fundamentales de diseño de algoritmos aprendidos.
- Ser capaz de responder a las siguientes preguntas cuando le sea presentado un nuevo algoritmo: ¿Cuán buen desempeño tiene?, ¿Existe una mejor forma de resolver el problema?

6. COMPETENCIAS

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Evaluar)
- b) Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución. (Evaluar)
- h) Incorporarse a un proceso de aprendizaje profesional continuo. (Usar)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)

Unidad 1: Análisis Básico (10)

Competencias esperadas:

Temas

• Diferencias entre el mejor, el esperado y el peor caso de un algoritmo.

- Análisis asintótico de complejidad de cotas superior y esperada.
- Definición formal de la Notación Big O.
- Clases de complejidad como constante, logarítmica, lineal, cuadrática y exponencial.
- Uso de la notación Big O.
- Relaciones recurrentes.
- Análisis de algoritmos iterativos y recursivos.
- Teorema Maestro y Árboles Recursivos.

Objetivos de Aprendizaje

- Explique a que se refiere con "mejor", "esperado" y "peor" caso de comportamiento de un algoritmo [Evaluar]
- En el contexto de a algoritmos específicos, identifique las características de data y/o otras condiciones o suposiciones que lleven a diferentes comportamientos [Evaluar]
- Determine informalmente el tiempo y el espacio de complejidad de diferentes algoritmos [Evaluar]
- Indique la definición formal de Big O [Evaluar]
- Lista y contraste de clases estándares de complejidad [Evaluar]
- Use la notación formal de la Big O para dar límites superiores asintóticos en la complejidad de tiempo y espacio de los algoritmos [Evaluar]
- Usar la notación formal Big O para dar límites de casos esperados en el tiempo de complejidad de los algoritmos [Evaluar]
- Explicar el uso de la notación theta grande, omega grande y o pequeña para describir la cantidad de trabajo hecho por un algoritmo [Evaluar]
- Usar relaciones recurrentes para determinar el tiempo de complejidad de algoritmos recursivamente definidos [Evaluar]
- Resuelve relaciones de recurrencia básicas, por ejemplo. usando alguna forma del Teorema Maestro [Evaluar]

Lecturas: [KT05], [DPV06], [RS09], [SF13], [Knu97]

Unidad 2: Estrategias Algorítmicas (30) Competencias esperadas:		
 Algoritmos de fuerza bruta. Algoritmos voraces. Divide y vencerás. Programación Dinámica. 	 Objetivos de Aprendizaje Para cada una de las estrategias (fuerza bruta, algoritmo goloso, divide y vencerás, recursividad en reversa y programación dinámica), identifica un ejemplo práctico en el cual se pueda aplicar [Evaluar] Utiliza un enfoque voraz para resolver un problema específico y determina si la regla escogida lo guía a una solución óptima [Evaluar] Usa un algoritmo de divide-y-vencerás para resolver un determinado problema [Evaluar] Usa programación dinámica para resolver un problema determinado [Evaluar] Determina el enfoque algorítmico adecuado para un problema [Evaluar] 	
Lecturas : [KT05], [DPV06], [RS09], [Als99]	!	

Unidad 3: Algoritmos y Estructuras de Datos fundamentales (10) Competencias esperadas: Temas Objetivos de Aprendizaje • Algoritmos numéricos simples, tales como el cálculo • Implementar algoritmos numéricos básicos [Evaluar] de la media de una lista de números, encontrar el • Implementar algoritmos de busqueda simple y exmínimo y máximo. plicar las diferencias en sus tiempos de complejidad • Algoritmos de búsqueda secuencial y binaria. [Evaluar] • Algoritmos de ordenamiento de peor caso cuadrático • Ser capaz de implementar algoritmos de orde-(selección, inserción) namiento comunes cuádraticos y O(N log N) [Evaluar • Algoritmos de ordenamiento con peor caso o caso promedio en O(N lg N) (Quicksort, Heapsort, Merge-• Discutir el tiempo de ejecución y eficiencia de memoria de los principales algoritmos de ordenamiento, busqueda y hashing [Usar] • Grafos y algoritmos en grafos: • Discutir factores otros que no sean eficiencia com-- Representación de grafos (ej., lista de adyacenputacional que influyan en la elección de algoritmos. cia, matriz de adyacencia) tales como tiempo de programación, mantenibilidad, - Recorrido en profundidad y amplitud y el uso de patrones específicos de la aplicación en los datos de entrada [Familiarizarse] • Montículos (Heaps) • Resolver problemas usando algoritmos básicos de • Grafos y algoritmos en grafos: grafos, incluyendo busqueda por profundidad y busqueda por amplitud [Evaluar] - Problema de corte máximo y mínimo - Busqueda local • Demostrar habilidad para evaluar algoritmos, para seleccionar de un rango de posibles opciones, para proveer una justificación por esa selección, y para implementar el algoritmo en un contexto en específico [Evaluar] • Describir la propiedad del heap y el uso de heaps como una implementación de colas de prioridad [Evaluar] • Resolver problemas usando algoritmos de grafos, incluyendo camino más corto de una sola fuente y camino más corto de todos los pares, y como mínimo un algoritmo de arbol de expansion minima [Evaluar]

Lecturas : [KT05], [DPV06], [RS09], [SW11], [GT09]

Unidad 4: Computabilidad y complejidad básica de autómatas (2) Competencias esperadas:		
 Introducción a las clases P y NP y al problema P vs. NP. Introducción y ejemplos de problemas NP- Completos y a clases NP-Completos. 	 Define las clases P y NP [Familiarizarse] Explique el significado de NP-Completitud [Familiarizarse] 	
Lecturas : [KT05], [DPV06], [RS09]		

Unidad 5: Estructuras de Datos Avanzadas y Análisis de Algoritmos (8)		
Competencias esperadas:		
Temas	Objetivos de Aprendizaje	
 Grafos (ej. Ordenamiento Topológico, encontrando componentes puertemente conectados) Algoritmos Teórico-Numéricos (Aritmética Modular, Prueba del Número Primo, Factorización Entera) Algoritmos aleatorios. Análisis amortizado. Análisis Probabilístico. 	 Entender el mapeamento de problemas del mundo real a soluciones algorítmicas (ejemplo, problemas de grafos, programas lineares,etc) [Familiarizarse] Seleccionar y aplicar técnicas de algoritmos avanzadas (ejemplo, randonmización, aproximación) para resolver problemas reales [Usar] Seleccionar y aplicar técnicas avanzadas de análisis (ejemplo, amortizado, probabilistico,etc) para algoritmos [Usar] 	
Lecturas : [KT05], [DPV06], [RS09], [Tar83], [Raw92]		

8. PLAN DE TRABAJO

8.1 Metodología

Se fomenta la participación individual y en equipo para exponer sus ideas, motivándolos con puntos adicionales en las diferentes etapas de la evaluación del curso.

8.2 Sesiones Teóricas

Las sesiones de teoría se llevan a cabo en clases magistrales donde se realizarán actividades que propicien un aprendizaje activo, con dinámicas que permitan a los estudiantes interiorizar los conceptos.

8.3 Sesiones Prácticas

Las sesiones prácticas se llevan en clase donde se desarrollan una serie de ejercicios y/o conceptos prácticos mediante planteamiento de problemas, la resolución de problemas, ejercicios puntuales y/o en contextos aplicativos.

9. SISTEMA DE EVALUACIÓN

****** EVALUATION MISSING ******

10. BIBLIOGRAFÍA BÁSICA

- [Als99] H. Alsuwaiyel. Algorithms: Design Techniques and Analysis. World Scientific, 1999. ISBN: 9789810237400.
- [DPV06] S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algorithms. McGraw-Hill Education, 2006. ISBN: 9780073523408.
- [GT09] Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Foundations, Analysis and Internet Examples. 2nd. John Wiley & Sons, Inc., 2009. ISBN: 0470088540, 9780470088548.
- [Knu97] D.E. Knuth. The Art of Computer Programming: Fundamental algorithms Vol 1. Third Edition. Addison-Wesley, 1997. ISBN: 9780201896831. URL: http://www-cs-faculty.stanford/~knuth/taocp.html.
- [KT05] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman Publishing Co., Inc., 2005. ISBN: 0321295358.
- [Raw92] G.J.E. Rawlins. Compared to What?: An Introduction to the Analysis of Algorithms. Computer Science Press, 1992. ISBN: 9780716782438.
- [RS09] Thomas H. Cormen; Charles E. Leiserson; Ronald L. Rivest and Clifford Stein. Introduction to Algorithms, Third Edition. 3rd. The MIT Press, 2009. ISBN: 0262033844.
- [SF13] R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms. Pearson Education, 2013. ISBN: 9780133373486.
- [SW11] R. Sedgewick and K. Wayne. Algorithms. Pearson Education, 2011. ISBN: 9780132762564.
- [Tar83] Robert Endre Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics, 1983. ISBN: 0-89871-187-8.